Adaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations
نویسنده
چکیده
In this paper we consider a posteriori error estimates for space-time finite element discretizations for optimal control of hyperbolic partial differential equations of second order. It is an extension of Meidner & Vexler (2007), where optimal control problems of parabolic equations are analyzed. The state equation is formulated as a first order system in time and a posteriori error estimates are derived separating the influences of time, space, and control discretization. Using this information the accuracy of the solution is improved by local mesh refinement. Numerical examples are presented. Finally, we analyze the conservation of energy of the homogeneous wave equation with respect to dynamically in time changing spatial meshes. 2010 Mathematical subject classification: 35L05; 49J20; 65M60; 65M50.
منابع مشابه
Adaptive Finite Element Methods for Optimal Control of Elastic Waves
In this paper a posteriori error estimates for space-time finite element discretizations for optimal control problems governed by the dynamical Lamé system are considered using the dual weighted residual method (DWR). We apply techniques developed in Kröner (2011a), where optimal control problems for second order hyperbolic equations are considered. The provided error estimator separates the in...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملHp-finite Element Methods for Hyperbolic Problems A
This paper is devoted to the a priori and a posteriori error analysis of the hp-version of the discontinuous Galerkin nite element method for partial differential equations of hyperbolic and nearly-hyperbolic character. We consider second-order partial diierential equations with nonnegative characteristic form, a large class of equations which includes convection-dominated diiusion problems , d...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملA Priori Estimates for Mixed Finite Element Approximations of Second Order Hyperbolic Equations with Absorbing Boundary Conditions
A priori estimates for mixed nite element methods for the wave equations, 6] T. Dupont, L 2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Meth. in Appl. Math.
دوره 11 شماره
صفحات -
تاریخ انتشار 2011